Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 4.337
Filter
1.
Cancer Lett ; : 216951, 2024 May 09.
Article in English | MEDLINE | ID: mdl-38734159

ABSTRACT

Neoadjuvant immunotherapy represents promising strategy in the treatment of esophageal squamous cell carcinoma (ESCC). However, the mechanisms underlying its impact on treatment sensitivity or resistance remain a subject of controversy. In this study, we conducted single-cell RNA and T/B cell receptor (scTCR/scBCR) sequencing of CD45+ immune cells on samples from 10 patients who received neoadjuvant immunotherapy and chemotherapy. We also validated our findings using multiplexed immunofluorescence and analyzed bulk RNA-seq from other cohorts in public database. By integrating analysis of 87357 CD45+ cells, we found GZMK+ effector memory T cells were relatively enriched and CXCL13+ exhausted T cells and regulator T cells decreased among responders, indicating a persistent anti-tumor memory process. Additionally, the enhanced presence of BCR expansion and somatic hypermutation process within TNFRSF13B+ memory B cells suggested their roles in antigen presentation. This was further corroborated by the evidence of the T-B co-stimulation pattern and CXCL13-CXCR5 axis. The complexity of myeloid cell heterogeneity was also particularly pronounced. The elevated expression of S100A7 in ESCC, as detected by bulk RNA-seq, was associated with an exhausted and immunosuppressive tumor microenvironment. In summary, this study has unveiled a potential regulatory network among immune cells and the clonal dynamics of their functions, and the mechanisms of exhaustion and memory conversion between GZMK+ Tem and TNFRSF13B+ Bmem from antigen presentation and co-stimulation perspectives during neoadjuvant PD-1 blockade treatment in ESCC.

2.
J Med Virol ; 96(5): e29675, 2024 May.
Article in English | MEDLINE | ID: mdl-38746997

ABSTRACT

Early confirmation of sustained virologic response (SVR) or viral relapse after direct-acting antivirals (DAAs) for hepatitis C virus (HCV) infection is essential based on public health perspectives, particularly for patients with high risk of nonadherence to posttreatment follow-ups. A total of 1011 patients who achieved end-of-treatment virologic response, including 526 receiving fixed-dose pangenotypic DAAs, and 485 receiving other types of DAAs, who had available off-treatment weeks 4 and 12 serum HCV RNA data to confirm SVR at off-treatment week 12 (SVR12) or viral relapse were included. The positive predictive value (PPV) and negative predictive value (NPV) of SVR4 to predict patients with SVR12 or viral relapse were reported. Furthermore, we analyzed the proportion of concordance between SVR12 and SVR24 in 943 patients with available SVR24 data. The PPV and NPV of SVR4 to predict SVR12 were 98.5% (95% confidence interval [CI]: 98.0-98.9) and 100% (95% CI: 66.4-100) in the entire population. The PPV of SVR4 to predict SVR12 in patients receiving fixed-dose pangenotypic DAAs was higher than those receiving other types of DAAs (99.8% [95% CI: 98.9-100] vs. 97.1% [95% CI: 96.2-97.8], p < 0.001). The NPVs of SVR4 to predict viral relapse were 100%, regardless of the type of DAAs. Moreover, the concordance between SVR12 and SVR24 was 100%. In conclusion, an off-treatment week 4 serum HCV RNA testing is sufficient to provide an excellent prediction power of SVR or viral relapse at off-treatment week 12 among patients with HCV who are treated with fixed-dose pangenotypic DAAs.


Subject(s)
Antiviral Agents , Hepacivirus , Hepatitis C, Chronic , RNA, Viral , Sustained Virologic Response , Humans , Antiviral Agents/therapeutic use , Antiviral Agents/administration & dosage , Male , Female , Middle Aged , Hepacivirus/genetics , Hepacivirus/drug effects , Aged , Adult , RNA, Viral/blood , Hepatitis C, Chronic/drug therapy , Hepatitis C, Chronic/virology , Recurrence , Follow-Up Studies , Treatment Outcome , Hepatitis C/drug therapy , Hepatitis C/virology
3.
Fish Shellfish Immunol ; 150: 109597, 2024 May 01.
Article in English | MEDLINE | ID: mdl-38697373

ABSTRACT

This study investigated the effects of fish protein hydrolysate derived from barramundi on growth performance, muscle composition, immune response, disease resistance, histology and gene expression in white shrimp (Penaeus vannamei). In vitro studies demonstrated FPH enhanced mRNA expressions of key immune-related genes and stimulated reactive oxygen species (ROS) production and phagocytic activity in shrimp hemocytes. To evaluate the effects of substituting fish meal with FPH in vivo, four isoproteic (43 %), isolipidic (6 %), and isoenergetic diets (489 kcal/100 g) were formulated with fish meal substitution levels of 0 % (control), 30 % (FPH30), 65 % (FPH65), and 100 % (FPH100). After 8-week feeding, the growth performance of FPH65 and FPH100 were significantly lower than that of control and FPH30 (p < 0.05). Similarly, the midgut histological examination revealed the wall thickness and villi height of FPH100 were significantly lower than those of control (p < 0.05). The shrimps were received the challenge of AHPND + Vibrio parahaemolyticus at week 4 and 8. All FPH-fed groups significantly enhanced resistance against Vibrio parahaemolyticus at week 4 (p < 0.05). However, this protective effect diminished after long-period feeding. No significant difference of survival rate was observed among all groups at week 8 (p > 0.05). The expressions of immune-related genes were analyzed at week 4 before and after challenge. In control group, V. parahaemolyticus significantly elevated SOD in hepatopancreas and Muc 19, trypsin, Midline-fas, and GPx in foregut (p < 0.05). Moreover, hepatopancreatic SOD of FPH65 and FPH100 were significantly higher than that of control before challenge (p < 0.05). Immune parameters were measured at week 8. Compared with control, the phagocytic index of FPH 30 was significantly higher (p < 0.05). However, dietary FPH did not alter ROS production, phenoloxidase activity, phagocytic rate, and total hemocyte count (p > 0.05). These findings suggest that FPH30 holds promise as a feed without adverse impacts on growth performance while enhancing the immunological response of white shrimp.

4.
Asian J Androl ; 2024 May 07.
Article in English | MEDLINE | ID: mdl-38727211

ABSTRACT

ABSTRACT: Infections and inflammatory reactions in the male genital tract are the leading causes of male infertility with a prevalence of 6%-10%, primarily affecting testicular and epididymal function and ultimately compromising sperm quality. However, most infertile patients with genital infection/inflammation are asymptomatic and easily overlooked. Traditional indicators, including white blood cells, elastase, and other components in semen, can reflect inflammation of the genital tract, but there is still a lack of a uniform standard method of detection. Therefore, it is necessary to explore reliable markers in semen that reflect the inflammatory status of the genital tract. Using the experimental autoimmune orchitis (EAO) model to simulate noninfectious chronic orchitis, we successfully collected ejaculated seminal fluid from EAO rats using optimized electrical stimulation devices. Proteomic analysis was performed using isobaric tags for relative and absolute quantification (iTRAQ). Compared to the control group, 55 upregulated and 105 downregulated proteins were identified in seminal plasma samples from the EAO group. In a preliminary screening, the inflammation-related protein S100A8/A9 was upregulated. We further verified that S100A8/A9 was increased in seminal plasma and highly expressed in testicular macrophages of the EAO model. In patients with oligoasthenospermia and genital tract infections, we also found that S100A8/A9 levels were remarkably increased in seminal plasma and testicular macrophages. S100A8/A9 in semen may be a potential biomarker for chronic genital inflammation. Our study provides a new potential biomarker for early diagnosis and further understanding of male infertility caused by genital inflammation.

5.
mBio ; : e0064024, 2024 May 10.
Article in English | MEDLINE | ID: mdl-38727246

ABSTRACT

Interleukin-18 binding protein (IL-18BP), a natural regulator molecule of the pro-inflammatory cytokine interleukin-18 (IL-18), plays an important role in regulating the expression of the cellular immunity factor interferon-γ (IFN-γ). In a previous RNA-seq analysis of porcine alveolar macrophages (PAM) infected with the TIM and TJ strains of porcine reproductive and respiratory syndrome virus (PRRSV), we unexpectedly found that the mRNA expression of porcine interleukin 18-binding protein (pIL-18BP) in PAM cells infected with the TJM strain was significantly higher than that infected with the TJ strain. Studies have shown that human interleukin-18 binding protein (hIL-18bp) plays an important role in regulating cellular immunity in the course of the disease. However, there is a research gap on pIL-18BP. At the same time, PRRSV infection in pigs triggers weak cellular immune response problems. To explore the expression and the role of pIL-18BP in the cellular immune response induced by PRRSV, we strived to acquire the pIL-18BP gene from PAM or peripheral blood mononuclear cell (PBMC) with RT-PCR and sequencing. Furthermore, pIL-18BP and pIL-18 were both expressed prokaryotically and eukaryotically. The colocalization and interaction based on recombinant pIL-18BP and pIL-18 on cells were confirmed in vitro. Finally, the expression of pIL-18BP, pIL-18, and pIFN-γ was explored in pigs with different PRRSV infection states to interpret the biological function of pIL-18BP in vivo. The results showed there were five shear mutants of pIL-18BP. The mutant with the longest coding region was selected for subsequent functional validation. First, it was demonstrated that TJM-induced pIL-18BP mRNA expression was higher than that of TJ. A direct interaction between pIL-18BP and pIL-18 was confirmed through fluorescence colocalization, bimolecular fluorescent complimentary (BIFC), and co-immunoprecipitation (CO-IP). pIL-18BP also can regulate pIFN-γ mRNA expression. Finally, the expression of pIL-18BP, pIL-18, and pIFN-γ was explored in different PRRSV infection states. Surprisingly, both mRNA and protein expression of pIL-18 were suppressed. These findings fill the gap in understanding the roles played by pIL-18BP in PRRSV infection and provide a foundation for further research.IMPORTANCEPRRSV-infected pigs elicit a weak cellular immune response and the mechanisms of cellular immune regulation induced by PRRSV have not yet been fully elucidated. In this study, we investigated the role of pIL-18BP in PRRSV-induced immune response referring to the regulation of human IL-18BP to human interferon-gamma (hIFN-γ). This is expected to be used as a method to enhance the cellular immune response induced by the PRRSV vaccine. Here, we mined five transcripts of the pIL-18BP gene and demonstrated that it interacts with pIL-18 and regulates pIFN-γ mRNA expression. Surprisingly, we also found that both mRNA and protein expression of pIL-18 were suppressed under different PRRSV strains of infection status. These results have led to a renewed understanding of the roles of pIL-18BP and pIL-18 in cellular immunity induced by PRRSV infection, which has important implications for the prevention and control of PRRS.

6.
Adv Mater ; : e2404120, 2024 May 10.
Article in English | MEDLINE | ID: mdl-38727702

ABSTRACT

This study innovatively addresses challenges in enhancing upconversion efficiency in lanthanide-based nanoparticles (UCNPs) by exploiting Shewanella oneidensis MR-1, a microorganism capable of extracellular electron transfer. Electroactive membranes, rich in c-type cytochromes, are extracted from bacteria and integrated into membrane-integrated liposomes (MILs), encapsulating core-shelled UCNPs with an optically inactive shell, forming UCNP@MIL constructs. The electroactive membrane, tailored to donate electrons through the inert shell, independently boosts upconversion emission under near-infrared excitation (980 nm or 1550 nm), bypassing ligand-sensitized UCNPs. The optically inactive shell restricts energy migration, emphasizing electroactive membrane electron donation. Density functional theory calculations elucidate efficient electron transfer due to the electroactive membrane hemes' highest occupied molecular orbital being higher than the valence band maximum of the optically inactive shell, crucial for enhancing energy transfer to emitter ions. The introduction of a SiO2 insulator coating diminishes light enhancement, underscoring the importance of unimpeded electron transfer. Luminescence enhancement remains resilient to variations in emitter or sensitizing ions, highlighting the robustness of the electron transfer-induced phenomenon. However, altering the inert shell material diminishes enhancement, emphasizing the role of electron transfer. This methodology holds significant promise for diverse biological applications. UCNP@MIL offers an advantage in cellular uptake, which proves beneficial for cell imaging. This article is protected by copyright. All rights reserved.

7.
Sci Total Environ ; 931: 172866, 2024 May 04.
Article in English | MEDLINE | ID: mdl-38705291

ABSTRACT

Tetracycline antibiotics (TCs) are extensively used in clinical medicine, animal husbandry, and aquaculture because of their cost-effectiveness and high antibacterial efficacy. However, the presence of TCs residues in the environment poses risks to humans. In this study, an inner filter effect (IFE) fluorescent probe, 2,2'-(ethane-1,2-diylbis((2-((2-methylquinolin-8-yl)amino)-2-oxoethyl)azanediyl))diacetic acid (MQDA), was developed for the rapid detection of Eu3+ within 30 s. And its complex [MQDA-Eu3+] was successfully used for the detection of TCs. Upon coordination of a carboxyl of MQDA with Eu3+ to form a [MQDA-Eu3+] complex, the carboxyl served as an antenna ligand for the effective detection of Eu3+ to intensify the emission intensity of MQDA via "antenna effect", the process was the energy absorbed by TCs via UV excitation was effectively transferred to Eu3+. Fluorescence quenching of the [MQDA-Eu3+] complex was caused by the IFE in multicolor fluorescence systems. The limits of detection of [MQDA-Eu3+] for oxytetracycline, chlorotetracycline hydrochloride, and tetracycline were 0.80, 0.93, and 1.7 µM in DMSO/HEPES (7:3, v/v, pH = 7.0), respectively. [MQDA-Eu3+] demonstrated sensitive detection of TCs in environmental and food samples with satisfactory recoveries and exhibited excellent imaging capabilities for TCs in living cells and zebrafish with low cytotoxicity. The proposed approach demonstrated considerable potential for the quantitative detection of TCs.

9.
Chemistry ; : e202400842, 2024 May 01.
Article in English | MEDLINE | ID: mdl-38691421

ABSTRACT

Recent interest has surged in using heterogeneous carriers to boost synergistic photocatalysis for organic transformations. Heterogeneous catalysts not only facilitate synergistic enhancement of distinct catalytic centers compared to their homogeneous counterparts, but also allow for the easy recovery and reuse of catalysts. This mini-review summarizes recent advancements in developing heterogeneous carriers, including metal-organic frameworks, covalent-organic frameworks, porous organic polymers, and others, for synergistic catalytic reactions. The advantages of porous materials in heterogeneous catalysis originate from their ability to provide a high surface area, facilitate enhanced mass transport, offer a tunable chemical structure, ensure the stability of active species, and enable easy recovery and reuse of catalysts. Both photosensitizers and catalysts can be intricately incorporated into suitable porous carriers to create heterogeneous dual photocatalysts for organic transformations. Notably, experimental evidence from reported cases has shown that the catalytic efficacy of heterogeneous catalysts often surpasses that of their homogeneous analogues. This enhanced performance is attributed to the proximity and confinement effects provided by the porous nature of the carriers. It is expected that porous carriers will provide a versatile platform for integrating diverse catalysts, thus exhibiting superior performance across a range of organic transformations and appealing prospect for industrial applications.

10.
Toxicol Mech Methods ; : 1-7, 2024 May 12.
Article in English | MEDLINE | ID: mdl-38736312

ABSTRACT

Although recent studies increasingly suggest the potential anti-cancer effect of quercetin, the exact underlying mechanism remains poorly demonstrated in oral squamous cell carcinoma (oSCC). Therefore, our research explored the impacts of quercetin on the ferroptosis and mTOR/S6KP70 axis in oSCC cell lines. After treating oSCC cells with quercetin or indicated compounds and transfection with SLC7A11- or S6KP70-overexpressing plasmid, cell viability was detected by CCK-8 assay. The level of ferroptosis in oSCC cells was assessed by measuring ROS and GSH levels. The activation of mTOR/S6KP70 axis was assessed by Western blotting. Quercetin promoted ferroptosis in an mTOR/S6KP70-dependent manner to inhibit tumor growth in oSCC cells. Mechanistically, we revealed that quercetin induced lipid peroxidation and reduced GSH levels by repressing SLC7A11 expression in oSCC cells. Specifically, the effects of quercetin on ferroptosis and mTOR and S6KP70 phosphorylation were partially blocked by both mTOR agonist and S6KP70 overexpression. Moreover, mTOR inhibitor promoted ferroptosis in quercetin-treated oSCC cells. Our findings showed that ferroptosis may be a new anti-tumor mechanism of quercetin. Additionally, we identified that quercetin can target mTOR/S6KP70 cascade to inhibit the growth of oSCC cells.

11.
BMC Infect Dis ; 24(1): 490, 2024 May 13.
Article in English | MEDLINE | ID: mdl-38741041

ABSTRACT

BACKGROUND: Toxoplasma gondii (T. gondii) is capable of infecting nearly all warm-blooded animals and approximately 30% of the global population. Though most infections are subclinical in immunocompetent individuals, congenital contraction can lead to severe consequences such as spontaneous abortion, stillbirth, and a range of cranio-cerebral and/or ocular abnormalities. Previous studies reported that T. gondii-infected pregnancy mice unveiled a deficit in both the amount and suppressive functions of regulatory T (Treg) cells, accompanied with reduced levels of forkhead box p3 (Foxp3). Recently, accumulative studies have demonstrated that microRNAs (miRNAs) are, to some extent, relevant to T. gondii infection. However, the link between alterations in miRNAs and downregulation of Foxp3 triggered by T. gondii has been only sporadically studied. METHODS: Quantitative reverse transcription polymerase chain reaction (RT-qPCR), protein blotting and immunofluorescence were employed to evaluate the impact of T. gondii infection and antigens on miRNA transcription and Foxp3 expression. Dual-luciferase reporter gene assays were performed to examine the fluorescence activity in EL4 cells, which were transfected with recombinant plasmids containing full-length/truncated/mutant microRNA-142a-3p (miR-142a) promoter sequence or wild type/mutant of Foxp3 3' untranslated region (3' UTR). RESULTS: We found a pronounced increase in miR-142a transcription, concurrent with a decrease in Foxp3 expression in T. gondii-infected mouse placental tissue. Similarly, comparable findings have been experimentally confirmed through the treatment of EL4 cells with T. gondii antigens (TgAg) in vitro. Simultaneously, miR-142a mimics attenuated Foxp3 expression, whereas its inhibitors markedly augmented Foxp3 expression. miR-142a promoter activity was elevated upon the stimulation of T. gondii antigens, which mitigated co-transfection of mutant miR-142a promoter lacking P53 target sites. miR-142a mimics deceased the fluorescence activity of Foxp3 3' untranslated region (3' UTR), but it did not affect the fluorescence activity upon the co-transfection of mutant Foxp3 3' UTR lacking miR-142a target site. CONCLUSION: In both in vivo and in vitro studies, a negative correlation was discovered between Foxp3 expression and miR-142a transcription. TgAg enhanced miR-142a promoter activity to facilitate miR-142a transcription through a P53-dependent mechanism. Furthermore, miR-142a directly targeted Foxp3 3' UTR, resulting in the downregulation of Foxp3 expression. Therefore, harnessing miR-142a may be a possible therapeutic approach for adverse pregnancy caused by immune imbalances, particularly those induced by T. gondii infection.


Subject(s)
Down-Regulation , Forkhead Transcription Factors , MicroRNAs , Toxoplasma , MicroRNAs/genetics , MicroRNAs/metabolism , Female , Animals , Pregnancy , Forkhead Transcription Factors/genetics , Forkhead Transcription Factors/metabolism , Mice , Toxoplasma/genetics , Toxoplasmosis/parasitology , Toxoplasmosis/genetics , Toxoplasmosis/metabolism , Pregnancy Outcome , T-Lymphocytes, Regulatory/immunology , Mice, Inbred C57BL , 3' Untranslated Regions
12.
J Clin Med ; 13(9)2024 Apr 26.
Article in English | MEDLINE | ID: mdl-38731092

ABSTRACT

Background: The assessment of future risk of cardiovascular diseases (CVD) is strongly recommended for all asymptomatic adults without CVD history. Carotid atherosclerosis (CA) is a preclinical phenotype of CVDs. However, data on estimated future CVD risks with respect to preclinical atherosclerosis are limited. This community-based study aimed to assess the relationships between predicted CVD risks and CA. Methods: We enrolled 3908 subjects aged 40-74 years without CVD history and calculated their 10-year CVD risks using the Framingham Risk Score (FRS) and the Pooled Cohort Equations (PCE). Carotid plaque (CP) at the extracranial carotid arteries was determined by high-resolution B-mode ultrasonography and further classified into mild or advanced CA. Results: The means of FRS for CP-negative and mild and advanced CA were 9.0%, 14.4%, and 22.1%, respectively (p-value < 0.0001). The corresponding values for PCE score were 4.8%, 8.8%, and 15.0%, respectively (p-value < 0.0001). The odds ratios (ORs) of having CP per 5.0% increase in FRS and PCE score were 1.23 (95% CI, 1.19-1.28) and 1.36 (95% CI, 1.28-1.44), respectively. The corresponding values of having advanced CA were 1.24 (95% CI, 1.19-1.29) and 1.38 (95% CI, 1.30-1.48), respectively. Among the models of FRS or PCE plus other conventional CVD risk factors, the FRS + age model had the highest discrimination for the presence of CP (AUROC, 0.7533; 95% CI, 0.7375-0.7691) as well as for the presence of advanced CA (AUROC, 0.8034; 95% CI, 0.7835-0.8232). The calibration of the FRS + age models for the presences of CP and advanced CA was excellent (χ2 = 8.45 [p = 0.49] and 10.49 [p = 0.31], respectively). Conclusions: Estimated future CVD risks were significantly correlated with risks of having CA. Both FRS and PCE had good discrimination for the presences of CP and advanced CA.

13.
Heliyon ; 10(8): e28543, 2024 Apr 30.
Article in English | MEDLINE | ID: mdl-38628704

ABSTRACT

Objective: Individual differences were observed in the clinical efficacy of Botulinum toxin A (BoNT-A) in the treatment of the primary Meige syndrome. Our study aimed to explore the potential associations between the clinical efficacy of BoNT-A in the treatment of the primary Meige syndrome and variants of SNAP25, SV2C and ST3GAL2, which are involving in the translocation of the BoNT-A in vivo. Methods: Patients with the primary Meige syndrome treated with BoNT-A were enrolled. Clinical efficacy was evaluated by the maximum improvement rate of motor symptoms and the duration of efficacy. Variants of SNAP25, SV2C and ST3GAL2 were obtained by Sanger sequencing. Another cohort diagnosed with primary cervical dystonia was also enrolled in the replication stage. Results: Among the 104 primary Meige syndrome patients, 80 patients (76.9%) had a good efficacy (the maximum improvement rate of motor symptoms ≥30%) and 24 (23. 1%) had a poor (the maximum improvement rate of motor symptoms <30%). As to the duration of efficacy, 52 patients (50.0%) had a long duration of efficacy (≥4 months), and 52 (50.0%) had a short (<4 months). In terms of primary Meige syndrome, SNAP25 rs6104571 was found associating with the maximum improvement rate of motor symptoms (Genotype: P = 0.02, OR = 0.26; Allele: P = 0.013, OR = 0.29), and SV2C rs31244 was found associating with the duration of efficacy (Genotype: P = 0.024, OR = 0.13; Allele: P = 0.012, OR = 0.13). Besides, we also conducted the association analyses between the variants and BoNT-A-related adverse reactions. Although, there was no statistical difference between the allele of SV2C rs31244 and BoNT-A-related adverse reactions, there was a trend (P = 0.077, OR = 2.56). In the replication stage, we included 39 patients with primary cervical dystonia to further expanding the samples' size. Among the 39 primary cervical dystonia patients, 25 patients (64.1%) had a good efficacy (the maximum improvement rate of motor symptoms ≥50%) and 14 (35.9%) had a poor (the maximum improvement rate of motor symptoms <50%). As to the duration of efficacy, 32 patients (82.1%) had a long duration of efficacy (≥6 months), and 7 (17.9%) had a short (<6 months). Integrating primary Meige syndrome and primary cervical dystonia, SV2C rs31244 was still found associating with the duration of efficacy (Genotype: P = 0.002, OR = 0. 23; Allele: P = 0.001, OR = 0. 25). Conclusion: In our study, SNAP25 rs6104571 was associated with the maximum improvement rate of motor symptoms in patients with primary Meige syndrome treated with BoNT-A, and patients carrying this variant had a lower improvement rate of motor symptoms. SV2C rs31244 was associated with duration of treatment in patients with primary Meige syndrome treated with BoNT-A and patients carrying this variant had a shorter duration of treatment. Patients with primary Meige syndrome carrying SV2C rs31244 G allele have an increase likelihood of BoNT-A-related adverse reactions. Involving 39 patients with primary cervical dystonia, the results further verify that SV2C rs31244 was associated with duration of treatment and patients carrying this variant had a shorter duration of treatment.

14.
Phys Chem Chem Phys ; 26(17): 13395-13404, 2024 May 01.
Article in English | MEDLINE | ID: mdl-38647031

ABSTRACT

Carbonaceous materials are promising candidates as anode materials for non-lithium-ion batteries (NLIBs) due to their appealing properties such as good electrical conductivity, low cost, and high safety. However, graphene, a classic two-dimensional (2D) carbon material, is chemically inert to most metal atoms, hindering its application as an electrode material for metal-ion batteries. Inspired by the unique geometry of a four-penta unit, we explore a metallic 2D carbon allotrope C5-10-16 composed of 5-10-16 carbon rings. The C5-10-16 monolayer is free from any imaginary frequencies in the whole Brillouin zone. Due to the introduction of a non-sp2 hybridization state into C5-10-16, the extended conjugation of π-electrons is disrupted, leading to the enhanced surface activity toward metal ions. We investigate the performance of C5-10-16 as the anode for sodium/potassium-ion batteries by using first-principles calculations. The C5-10-16 sheet has high theoretical specific capacities of Na (850.84 mA h g-1) and K (743.87 mA h g-1). Besides, C5-10-16 exhibits a moderate migration barrier of 0.63 (0.32) eV for Na (K), ensuring rapid charging/discharging processes. The average open-circuit voltages of Na and K are 0.33 and 0.62 V, respectively, which are within the voltage acceptance range of anode materials. The fully sodiated (potassiated) C5-10-16 shows tiny lattice expansions of 1.4% (1.3%), suggesting the good reversibility. Moreover, bilayer C5-10-16 significantly affects both the adsorption strength and the mobility of Na or K. All these results show that C5-10-16 could be used as a promising anode material for NLIBs.

15.
Virus Res ; 344: 199369, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38608732

ABSTRACT

Tobacco (Nicotiana tabacum) is one of the major cash crops in China. Potato virus Y (PVY), a representative member of the genus Potyvirus, greatly reduces the quality and yield of tobacco leaves by inducing veinal necrosis. Mild strain-mediated cross-protection is an attractive method of controlling diseases caused by PVY. Currently, there is a lack of effective and stable attenuated PVY mutants. Potyviral helper component-protease (HC-Pro) is a likely target for the development of mild strains. Our previous studies showed that the residues lysine at positions 124 and 182 (K124 and K182) in HC-Pro were involved in PVY virulence, and the conserved KITC motif in HC-Pro was involved in aphid transmission. In this study, to improve the stability of PVY mild strains, K at position 50 (K50) in KITC motif, K124, and K182 were separately substituted with glutamic acid (E), leucine (L), and arginine (R), resulting in a triple-mutant PVY-HCELR. The mutant PVY-HCELR had attenuated virulence and did not induce leaf veinal necrosis symptoms in tobacco plants and could not be transmitted by Myzus persicae. Furthermore, PVY-HCELR mutant was genetically stable after six serial passages, and only caused mild mosaic symptoms in tobacco plants even at 90 days post inoculation. The tobacco plants cross-protected by PVY-HCELR mutant showed high resistance to the wild-type PVY. This study showed that PVY-HCELR mutant was a promising mild mutant for cross-protection to control PVY.


Subject(s)
Cross Protection , Mutation , Nicotiana , Plant Diseases , Potyvirus , Viral Proteins , Potyvirus/genetics , Potyvirus/pathogenicity , Potyvirus/enzymology , Nicotiana/virology , Plant Diseases/virology , Viral Proteins/genetics , Viral Proteins/metabolism , Virulence , Animals , Aphids/virology , Cysteine Endopeptidases/genetics , Cysteine Endopeptidases/metabolism , Plant Leaves/virology , China
16.
Acta Pharmacol Sin ; 2024 Apr 26.
Article in English | MEDLINE | ID: mdl-38671193

ABSTRACT

Despite the widespread prevalence and important medical impact of insomnia, effective agents with few side effects are lacking in clinics. This is most likely due to relatively poor understanding of the etiology and pathophysiology of insomnia, and the lack of appropriate animal models for screening new compounds. As the main homeostatic, circadian, and neurochemical modulations of sleep remain essentially similar between humans and rodents, rodent models are often used to elucidate the mechanisms of insomnia and to develop novel therapeutic targets. In this article, we focus on several rodent models of insomnia induced by stress, diseases, drugs, disruption of the circadian clock, and other means such as genetic manipulation of specific neuronal activity, respectively, which could be used to screen for novel hypnotics. Moreover, important advantages and constraints of some animal models are discussed. Finally, this review highlights that the rodent models of insomnia may play a crucial role in novel drug development to optimize the management of insomnia.

17.
Pharmacol Res ; 203: 107182, 2024 May.
Article in English | MEDLINE | ID: mdl-38614373

ABSTRACT

Inflammatory diseases, including infectious diseases, diabetes-related diseases, arthritis-related diseases, neurological diseases, digestive diseases, and tumor, continue to threaten human health and impose a significant financial burden despite advancements in clinical treatment. Pyroptosis, a pro-inflammatory programmed cell death pathway, plays an important role in the regulation of inflammation. Moderate pyroptosis contributes to the activation of native immunity, whereas excessive pyroptosis is associated with the occurrence and progression of inflammation. Pyroptosis is complicated and tightly controlled by various factors. Accumulating evidence has confirmed that epigenetic modifications and post-translational modifications (PTMs) play vital roles in the regulation of pyroptosis. Epigenetic modifications, which include DNA methylation and histone modifications (such as methylation and acetylation), and post-translational modifications (such as ubiquitination, phosphorylation, and acetylation) precisely manipulate gene expression and protein functions at the transcriptional and post-translational levels, respectively. In this review, we summarize the major pathways of pyroptosis and focus on the regulatory roles and mechanisms of epigenetic and post-translational modifications of pyroptotic components. We also illustrate these within pyroptosis-associated inflammatory diseases. In addition, we discuss the effects of novel therapeutic strategies targeting epigenetic and post-translational modifications on pyroptosis, and provide prospective insight into the regulation of pyroptosis for the treatment of inflammatory diseases.


Subject(s)
Epigenesis, Genetic , Inflammation , Protein Processing, Post-Translational , Pyroptosis , Humans , Pyroptosis/drug effects , Animals , Inflammation/genetics , Inflammation/metabolism , Anti-Inflammatory Agents/therapeutic use , Anti-Inflammatory Agents/pharmacology
18.
Adv Sci (Weinh) ; : e2400642, 2024 Apr 22.
Article in English | MEDLINE | ID: mdl-38647258

ABSTRACT

Kidney stones are a pervasive disease with notoriously high recurrence rates that require more effective treatment strategies. Herein, tartronic acid is introduced as an efficient inhibitor of calcium oxalate monohydrate (COM) crystallization, which is the most prevalent constituent of human kidney stones. A combination of in situ experimental techniques and simulations are employed to compare the inhibitory effects of tartronic acid with those of its molecular analogs. Tartronic acid exhibits an affinity for binding to rapidly growing apical surfaces of COM crystals, thus setting it apart from other inhibitors such as citric acid, the current preventative treatment for kidney stones. Bulk crystallization and in situ atomic force microscopy (AFM) measurements confirm the mechanism by which tartronic acid interacts with COM crystal surfaces and inhibits growth. These findings are consistent with in vivo studies that reveal the efficacy of tartronic acid is similar to that of citric acid in mouse models of hyperoxaluria regarding their inhibitory effect on stone formation and alleviating stone-related physical harm. In summary, these findings highlight the potential of tartronic acid as a promising alternative to citric acid for the management of calcium oxalate nephropathies, offering a new option for clinical intervention in cases of kidney stones.

19.
Br J Pharmacol ; 2024 Apr 21.
Article in English | MEDLINE | ID: mdl-38644540

ABSTRACT

BACKGROUND AND PURPOSE: White adipose tissue (WAT) is involved in rheumatoid arthritis (RA). This study explored its potential as an antirheumatic target. EXPERIMENTAL APPROACH: WAT status of healthy and adjuvant-induced arthritis (AIA) rats were compared. The contribution of WAT to RA pathology was evaluated by pre-adipocyte transplant experiments and by dissecting perirenal fat pads of AIA rats. The impact of RA on WAT was investigated by culturing pre-adipocytes. Proteins differentially expressed in WAT of healthy and AIA rats were identified by the UPLC/MS2 method. These together with PPARγ siRNA and agonist were used to treat pre-adipocytes in vitro. The medium was used for THP-1 monocyte culture. KEY RESULTS: Compared with healthy controls, AIA WAT was smaller but secreted more leptin, eNAMPT, MCP-1, TNF-α, and IL-6. AIA rat pre-adipocytes increased the levels of these adipokines in healthy recipients. RA patients' serum induced a similar secretion change and impaired differentiation of pre-adipocytes. Adipectomy eased AIA-related immune abnormalities and arthritic manifestations. Hepatokines PON1, IGFBP4, and GPIHBP1 were among the differential proteins in high levels in RA blood, and induced inflammatory secretions by pre-adipocytes. GPIHBP1 inhibited PPARγ expression and caused differentiation impairment and inflammatory secretion by pre-adipocytes, a similar outcome to PPARγ-silencing. This endowed the cells with an ability to activate monocytes, which can be abrogated by rosiglitazone. CONCLUSION AND IMPLICATIONS: Certain hepatokines potentiate inflammatory secretions by pre-adipocytes and expedite RA progression by inhibiting PPARγ. Targeting this signalling or abnormal WAT secretion by various approaches may reduce RA severity.

20.
Synth Syst Biotechnol ; 9(3): 426-435, 2024 Sep.
Article in English | MEDLINE | ID: mdl-38601209

ABSTRACT

Xylanase, an enzyme capable of hydrolyzing non-starch polysaccharides found in grain structures like wheat, has been found to improve the organizational structure of dough and thus increase its volume. In our past work, one promising xylanase FXYL derived from Fusarium oxysporum Fo47 and first expressed 779.64 U/mL activity in P. pastoris. It has shown significant potential in improving the quality of whole wheat bread, making it become a candidate for development as a new flour improver. After optimization of expression elements and gene dose, the xylanase activity of FXYL strain carrying three-copies reached 4240.92 U/mL in P. pastoris. In addition, 12 factors associated with the three stages of protein expression pathway were co-expressed individually in order in three-copies strain, and the translation factor Pab1 co-expression increased FXYL activity to 8893.53 U/mL. Nevertheless, combining the most effective or synergistic factors from three stages did not exhibit better results than co-expressing them alone. To further evaluate the industrial potential, the xylanase activity and protein concentration reached 81184.51 U/mL and 11.8 g/L in a 5 L fed-batch fermenter. These engineering strategies improved the expression of xylanase FXYL by more than 104-fold, providing valuable insights for the cost-effective industrial application of FXYL in the baking field.

SELECTION OF CITATIONS
SEARCH DETAIL
...